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aN/ap =x (N)av/a&,
aN/aq = —p, 2(N) 1- ae/ap,

(1)
(2)

where the velocity vector V = Lg(N)RT)zN; j
N = N

= ~V~/L'g(N)RT]*'; 0 is the a.ngle of inclination of the
vector V to the x axis; and q and P are potential and stream
functions for the vector N, defined by the equations
N=V'q =V')CkP. To a given choice of the function g(N),
there correspond flows with a given physical characteristic,
namely, a relation between N and the pressure p on curves
normal to the streamlines. Choice of g(N) also fixes the
form of the functions Xi, X2 and all other functions of N
or X which will be introduced subsequently.

Except when g(N) 0- (1 —N') ', irrotationality of N re-
quires, if the equation of motion is to be integrable, that
(i) the stagnation pressure pt vary according to the
equations

(3)

(where 4 and + are arbitrary), and is constant (between
shocks) on streamlines; (ii) V'q ~ Z(N)4'(q). If g(N)
~(1—N-"} ', the integrability condition yields, instead

of (3), the simple result 7'pz—=0. The second of Eqs. (3) can,
however, be assumed here also, in order that explicit in-
tegration of the flow equations can be achieved for this
important case. It is possible, with other choices of g(N),
that the detailed analysis may be considerably simplified
as it is known to be for diabatic flow. '

YVe now assume that (1) and (2) are integrable; then if

N{p, P) can be found by some means, 6 is calculable from

~) = f '
Xm(—N) dtf+ J '

p &—(N)] '—dg. ('4)
aN v, yp

0'~ 4'p aq) 0'p~ 4'p a$

Equation (3) together with assumed integrability of (1)
and (2), demands that the functional-differential equation,
involving the functions 4 (q ) and Og ), must be satisfied.

)ltd(',R)F'(4 }+2p '('X)F{4)
+p ('X)P'{9 )+2p, '(9j)P(4') =0, (5)

where

F(~) =(d~/dv ) '; I'(+) =(d+/4) '

After repeated integration with respect to 4 and +,
using (3), Fq. (5) can be reduced to a fiinctional equation
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'N classical aerodynamics the steady flow of incom-
pressible, inviscid fluids can often be described ex-

plicitly in terms of functions of a complex variable, There
are, however, few accurate solutions of the equations for
compressible flow that can be obtained in closed form, In
view of the importance of obtaining more exact solutions,
especially in the transonic region, the following outline of
a new method of approach is submitted (see related work
of Munk'). The flows considered are adiabatic but not
necessarily isentropic and iso-energetic.

For uniplanar irrotational flow, the compressible flow

equations can be written

in 4 (q ) and +(P), which we shall scheniatically represent by

+L+, +, ~'(v)»(9)j=0, (6)
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"F the equation of state of a gas or vapor is expressed by
the well-known relation

d d' d'
p=RT —+8—+C—+3f .V' M'

where p is the pressure, T the absolute temperature, d the
density, 3f the molecular weight, R the gas constant and
where 8, C, etc. , are functions of T and are characteristic
of the gas or vapor, then it can be shown theoretically that,
under equilibrium conditions in a hollow centrifuge rotor
with inside radius r spinning N r.p.s.,

27r'MN2r' d„28 3C-= log.—+—(d„—dp)+ (d„'—dp')+, (1)RT dp 31 2M'

where d, and dp are the densities at the radius r and the
axis, respectively. Since this latter equation may be used for
determining the molecular weight of a gas or vapor, a
precise experimental test of the relation has been under-
tal-en. The apparatus consists of an air driven vacuum-type
centrifuge which is similar to those previously described. '
The rotor is a short accurately machined hollow cylinder

in which c;(p) and k;{q ) are functions introduced in the
partial integrations.

If any functions C (p) and +(P) can be found that reduce
(6) to an identity, then (3) and (4) immediately yield
explicit, closed expressions for N and 8. Further integration
would yield x and y as functions of p and P. Simple radial
and vortex flows correspond to choosing + and 4, in turn,
to be constant. No other exact solutions of the functional
Eqs. (5) and (6) are known at present, although all pre-
viously known compressible flows have not been tested
for their possible conformity to these equations.

The utility of the method, as compared to others, will,
of course, depend on whether exact or approximate solu-
tions of (5) and (6) can be found that yield flow patterns
of some physical interest. There are indications that such
solutions can be found in the transonic region. It is noted
that the description N=V'q applies to fields other than
those of constant entropy and stagnation pressure, and
may, therefore, make possible investigations of compressible
flows down-stream from regions of heating and viscous
dissipation.

This investigation was begun at; the Cleveland laboratory
of the N.A.C.A. in 1945. The assistance of the author' s
co-workers there, Dr. P. E. Guenther and Mr. R. H.
Wasserman, is gratefully acknowledged.

~ M. M. Munk, Phys. Rev. 72, 176 (A) (1947).
2 B.L. Hicks, Phys. Rev. 71, 476 (A) (1947); B.R.L. Report No. 633,

1947. Also Hicks, Guenther, and Wasserman, Quart. App. Math.
(October, 1947).
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{2 cm high and 4.4 cm radius) with fiat ends and is sup-
ported in the vacuum chamber by a thin fiexible hollow
shaft. The hollow shaft allows the pressure at the axis of
the hollow spinning rotor to be measured at various rotor
speeds. Measurements of this axis pressure were made at
intervals of 100 r.p.s. up to 1200 r.p.s. with nitrogen, oxy-
gen, and CO2 gases, respectively. Kith these data, together
with an accurate knowledge of the dimensions of the hollow
rotor and auxiliary pressure measuring apparatus, the
temperature, and the molecular weights of the respective
gases, Eq. (1), could be tested. The results obtained show
that this equation holds within the limit of experimental
error. When Eq. {1)was used to determine the molecular
weights of the nitrogen, oxygen, and CO2 gases respectively,
the values found agreed with the accepted values within
considerably less than one percent.

Experiments also were carried out on pure ether vapor in
equilibrium with the liquid phase in the periphery of the
rotor. Ether was distilled into the evacuated rotor while it
was spinning until about a cubic centimeter of the liquid
condensed at the periphery. The pressure of the vapor at
the axis was then measured as a function of the rotor speed
and Eq. (1)was found to hold within the experimental error
of roughly one percent. Consequently the molecular weight
of a gas or vapor can be measured by the centrifuge method
with a precision of about one percent. In the case of a
radioactive gas or vapor, the molecular weight may be
determined by measuring the amount of radioactivity at
the axis of the rotor as a function of the rotor speed. The
advantage of this centrifuge method for determining the
molecular weights of radioactive gases or vapors is that only
an extremely minute amount of the radioactive material is
required, especially when the material can be mixed with a
gas such as CO2, nitrogen or helium.

+ This work was supported by the Bureau of Ordnance, U. S. Navy
under Contract NOrd-7873.

~ J. W. Beams, Rev. Mod. Phys. 10, 249 {1938).
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' ~ITTING gravitational theory into the framework of
special relativity theory is a problem that has proved

practically insoluble. At the salne time, the incorporation
of electromagnetic phenomena into general relativity
theory has proved extremely complex. We want to point

~ out that the equations of motion for a particle in an
electromagnetic and gravitational field may be derived
from a simple Lagrangian which is based on an extended
principle of special relativity theory.

We consider the position and velocity space of the
particle q =(x", ilv"), {a=1~ ~ ~ 8, @=1~ ~ 4) where l is a
constant of the dimensions of length, and v"=i", a dot
denoting differentiation with respect to ds = (dx"dx„)&. For
any four-vector 84 =B4, 8& = —8;(j = 1, 2, 3). We now de-
fine an 8-invariant Lagrangian

I =Aadq /dv' (a =| 8)

where dr=(dq dq )& and A is an. 8-vector describing the
interaction between the particle and the field. We write
A~=(eK„, iml 'e„) where K„, ~„are two four-vectors and
e, m are constants characteristic of the particle. Then

Z, =Ldll/as =e.„v —m.„~ .
Hence we define'

aZ d 8Z
Bv" ds 88"

alp„, = —Z„=aZ/as~.

The variational principle

Ld&= S Zds=0

then yields j„=d„Z,where 8„—=8/Bx".
In general the A may depend upon both the position

and velocity coordinates, but we consider here only the
special case in which they are functions of the x" only.
Then

p& =me&+eK& ' I &
= me& '

Pp, = eV BpKv mv Bpev.

The Hamiltonian may be defined by

H=p (dq /dr) —L=(p —A )(dq /d7)
so that

dq /dr=OH/8p; dp /dr = —BH/8q .

Using d/ds =—v"8, for the special case considered here, we

may rewrite the equations of motion thus

d/dslv (8&e +8 ez)j= (e/m)v (8&K B„K&)+vv 8&8

Ke now define

gpv I9pev+l9vCp ) tv = BpKV ~VKp)

so that g„„f„v are 4-tensors, respectively symmetrical and
antisymmetrical, derivable from the 8-vector A . Thus

g»(dv"/dS) = (e/m)f»vv+ —',V"v (Bt gva ~ag pv ~vg&~),

which suggests that we may interpret the f» as the
electromagnetic field strengths and the g„„as the gravi-
tational potentials. For the general case in which the A
involves v" explicitly, other types of fields appear in these
equations as well.

Alternatively we have

2+m(d/dS) (&~V")= eK„V"+—,'mg„vV"Vv

from which, clearly, the equations of motion also follow.
We also have K=H{d /ds) —= -'mg„„v"v". We note that for
e„=~xz, g;; = —I, g44 = i, g„„=0(p / v); then if (P„=.p&+ Pz,
it follows that 6'&=mv„+eK„, d(P&/dt=ev"8&K„, the usual

electromagnetic equations.
The above results suggest that the equations of motion

of a particle are covariant for arbitrary rotations of its
position and velocity space. Such rotations are found to
relate observers who are spinning or accelerated with re-
spect to each other, and clearly mix the electromagnetic
and gravitational components of A . Analysis of this group
of rotations and of the field equations for A will be
published soon.

' E. T. Whittaker, Analytical Dynamics {Dover Press, New York,
1944), p. 266.


